Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 21(8): 1313-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24786832

RESUMO

Diets rich in saturated fats may contribute to the loss of pancreatic ß-cells in type 2 diabetes. JunB, a member of the activating protein 1 (AP-1) transcription factor family, promotes ß-cell survival and mediates part of the beneficial effects of GLP-1 agonists. In this study we interrogated the molecular mechanisms involved in JunB-mediated ß-cell protection from lipotoxicity. The saturated fatty acid palmitate decreased JunB expression, and this loss may contribute to ß-cell apoptosis, as overexpression of JunB protected cells from lipotoxicity. Array analysis of JunB-deficient ß-cells identified a gene expression signature of a downregulated endoplasmic reticulum (ER) stress response and inhibited AKT signaling. JunB stimulates XBP1 expression via the transcription factor c/EBPδ during ER stress, and forced expression of XBP1s rescued the viability of JunB-deficient cells, constituting an important antiapoptotic mechanism. JunB silencing inhibited AKT activation and activated the proapoptotic Bcl-2 protein BAD via its dephosphorylation. BAD knockdown reversed lipotoxic ß-cell death potentiated by JunB siRNA. Interestingly, XBP1s links JunB and AKT signaling as XBP1 knockdown also reduced AKT phosphorylation. GLP-1 agonists induced cAMP-dependent AKT phosphorylation leading to ß-cell protection against palmitate-induced apoptosis. JunB and XBP1 knockdown or IRE1 inhibition decreased AKT activation by cAMP, leading to ß-cell apoptosis. In conclusion, JunB modulates the ß-cell ER stress response and AKT signaling via the induction of XBP1s. The activation of the JunB gene network and the crosstalk between the ER stress and AKT pathway constitute a crucial defense mechanism by which GLP-1 agonists protect against lipotoxic ß-cell death. These findings elucidate novel ß-cell-protective signal transduction in type 2 diabetes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/enzimologia , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
2.
Cell Death Dis ; 5: e1124, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24625983

RESUMO

Apoptosis of pancreatic beta cells is a feature of type 2 diabetes and its prevention may have therapeutic benefit. High glucose concentrations induce apoptosis of islet cells, and this requires the proapoptotic Bcl-2 homology domain 3 (BH3)-only proteins Bim and Puma. We studied the stress pathways induced by glucotoxicity in beta cells that result in apoptosis. High concentrations of glucose or ribose increased expression of the transcription factor CHOP (C/EBP homologous protein) but not endoplasmic reticulum (ER) chaperones, indicating activation of proapoptotic ER stress signaling. Inhibition of ER stress prevented ribose-induced upregulation of Chop and Puma mRNA, and partially protected islets from glucotoxicity. Loss of Bim or Puma partially protected islets from the canonical ER stressor thapsigargin. The antioxidant N-acetyl-cysteine also partially protected islets from glucotoxicity. Islets deficient in both Bim and Puma, but not Bim or Puma alone, were significantly protected from killing induced by the mitochondrial reactive oxygen species donor rotenone. Our data demonstrate that high concentrations of glucose induce ER and oxidative stress, which causes cell death mediated by Bim and Puma. We observed significantly higher Bim and Puma mRNA in islets of human donors with type 2 diabetes. This indicates that inhibition of Bim and Puma, or their inducers, may prevent beta-cell destruction in type 2 diabetes.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Ribose/metabolismo , Técnicas de Cultura de Tecidos , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
3.
FEBS Lett ; 586(7): 984-9, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22569251

RESUMO

The cytokines interleukin (IL)-1ß and tumor necrosis factor (TNF)-α induce ß-cell death in type 1 diabetes via NF-κB activation. IL-1ß induces a more marked NF-κB activation than TNF-α, with higher expression of genes involved in ß-cell dysfunction and death. We show here a differential usage of the IKK complex by IL-1ß and TNF-α in ß-cells. While TNF-α uses IKK complexes containing both IKKα and IKKß, IL-1ß induces complexes with IKKα only; this effect is achieved by induction of IKKß degradation via the proteasome. Both IKKγ and activation of the TRAF6-TAK1-JNK pathway are involved in IL-1ß-induced IKKß degradation.


Assuntos
Quinase I-kappa B/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inativação Gênica , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Terapia de Alvo Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Inibidores de Proteínas Quinases/farmacologia , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteólise/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
4.
Oncogene ; 31(13): 1723-32, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21841823

RESUMO

Destruction of insulin-producing pancreatic ß-cells by local autoimmune inflammation is a hallmark of type 1 diabetes. Histochemical analysis of pancreases from non-obese diabetic mice indicated activation of the transcription factor JunB/AP-1 (activator protein-1) after autoimmune infiltration of the islets. In vitro studies demonstrated that the cytokines tumor necrosis factor (TNF)-α and interferon (IFN)-γ induce JunB expression as a protective mechanism against apoptosis in both human and rodent ß-cells. The gene network affected was studied by microarray analysis showing that JunB regulates nearly 20% of the cytokine-modified ß-cell genes, including the transcription factor ATF3. Direct transcriptional induction of ATF3 by JunB is a key event for ß-cell survival after TNF-α+IFN-γ treatment. Moreover, pharmacological upregulation of JunB/ATF3 via increased cAMP protected rodent primary ß-cells and human islet cells against pro-inflammatory mediators. These results were confirmed in genetically modified islets derived from Ubi-JunB transgenic mice. Our findings identify ATF3 as a novel downstream target of JunB in the survival mechanism of ß-cells under inflammatory stress.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-jun/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
5.
Cell Death Differ ; 16(11): 1539-50, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19629134

RESUMO

Chronic inflammation and pro-inflammatory cytokines are important mediators of pancreatic beta-cell destruction in type 1 diabetes (T1D). We presently show that the cytokines IL-1beta+IFN-gamma and different ER stressors activate the Bcl-2 homology 3 (BH3)-only member death protein 5 (DP5)/harakiri (Hrk) resulting in beta-cell apoptosis. Chemical ER stress-induced DP5 upregulation is JNK/c-Jun-dependent. DP5 activation by cytokines also involves JNK/c-Jun phosphorylation and is antagonized by JunB. Interestingly, cytokine-inducted DP5 expression precedes ER stress: mitochondrial release of cytochrome c and ER stress are actually a consequence of enhanced DP5 activation by cytokine-mediated nitric oxide formation. Our findings show that DP5 is central for beta-cell apoptosis after different stimuli, and that it can act up- and downstream of ER stress. These observations contribute to solve two important questions, namely the mechanism by which IL-1beta+IFN-gamma induce beta-cell death and the nature of the downstream signals by which ER stress 'convinces' beta-cells to trigger apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/citologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Neuropeptídeos/metabolismo , Animais , Citocromos c/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Regulação para Cima
6.
Oncogene ; 27(5): 641-52, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-17667939

RESUMO

The activating protein-1 transcription factor, in particular the Jun proteins play critical roles in the regulation of cell proliferation and tumor progression. To study the potential clinical relevance of interfering with JunB expression, we generated retroviruses expressing short hairpin RNA. Reduction of JunB levels causes increased proliferation and tumorigenicity in wild-type murine fibroblasts, whereas in c-Jun knockout cells p53-independent cell cycle arrest and apoptosis are induced. Using melanoma-derived B16-F10 cancer cells the combination of JunB knockdown and c-Jun/JNK inactivation leads to cell cycle arrest and apoptosis-inducing factor-dependent apoptosis. Furthermore, the combined treatment extends survival of mice inoculated with the tumor cells. These results indicate that in the absence of c-Jun, JunB can act as a tumor promoter and inactivation of both, c-Jun and JunB, could provide a valuable strategy for antitumor intervention.


Assuntos
Proliferação de Células , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , Animais , Apoptose , Fibroblastos , Humanos , Melanoma/patologia , Camundongos , Neoplasias/terapia , Retroviridae , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
7.
Gene Ther ; 13(1): 1-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16121206

RESUMO

Hec1 (highly expressed in cancer) plays an important role in chromosome segregation by interacting with a subset of checkpoint proteins that survey proper chromosome alignment and bipolar spindle attachment. In order to disrupt mitotic progression of tumor cell lines, we have used retrovirus and adenovirus vectors that inhibit Hec1 synthesis. Vector-expressed short hairpin RNAs (shRNAs) caused very efficient depletion of the target protein, cellular arrest and considerable mitotic catastrophe induction 96 h post infection in human cervix-adenocarcinoma (HeLa) and glioblastoma (U-373-MG) cell lines. Furthermore, adenocarcinomas induced in the flanks of nude mice show significant reduction in size compared with control when treated with either Hec1-shRNA retroviruses or adenoviruses. These results indicate that depletion of Hec1 could be used as a new strategy to block the dividing cell, and therefore against cancer.


Assuntos
Terapia Genética/métodos , Neoplasias/terapia , Proteínas Nucleares/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Adenoviridae/genética , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Segregação de Cromossomos/efeitos dos fármacos , Proteínas do Citoesqueleto , Feminino , Citometria de Fluxo , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Glioblastoma/patologia , Glioblastoma/terapia , Células HeLa , Humanos , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Mitose/efeitos dos fármacos , Transplante de Neoplasias , Neoplasias/patologia , Retroviridae/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...